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CHAPTER 1

Preliminaries

1. Duality

This section draws heavily from material presented in the Duality chapter of Boyd
and Vanderberghe’s Conver Optimization. It is meant to pick out important parts of the
chapter to give intuition for the arguments given in class.

1.1. Introduction. Suppose we have the problem:

minimize fo(z)
subject to fi(z) <0,i € [m]

hj(z) = 0,3 € [p]
Let us denote the optimal value as p*. The key idea in forming the Lagrangian is that

we incorporate the constraints into the objective as the weighted sum of the constraint
functions. Let us consider £ : R™ x R™ x RP.

m p
L(z, A\ v) = fo(z) + > Nifi(z) + > vihj(x)
i=1 j=1
where the vectors A, v are the dual variables.

1.2. Lagrange Dual Function. We now define the Lagrange dual function g : R™ x
R? — R:

= inf L
g\ ) inf (x, A\, V)

m p
nf fo@) + Y Nifi(z) + > wihj(x)
i=1 Jj=1

Intuitively, for any setting of A, v, the dual function gives the corresponding minimum over
x € D. Therefore, the dual function yields lower bounds on p*; that is, for all A > 0, v:

g\ v) <p"
5
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PROOF. Suppose Z feasible.
= fi(@)<0Viel,....m
hj(z)=0V jel,...,p
= L(Z,\,v) < fo(T)
=g\ v) < L(Z,\v) < fo(T)
O
1.2.1. Linear Approzimation Interpretation. We can reformulate our original constrained

optimization problem with hard constraints in the form of “infinity” times indicator func-
tions for when the constraints are violated.

m p
minimize fo(m) + 00 x Y 1{fi(x) > 0} + 00 x Y _1{hi(x) # 0}
i=1 Jj=1

The Lagrangian provides a softer version of these constraints, where f;(x) > 0 incurs a
penalty proportional to A;. It is easy to show that these linear functions always underes-
timate the “infinity times indicator” functions; therefore, it follows that the dual function
yields a lower bound on the optimal value of the original problem.

1.2.2. Lagrange Dual Function & Conjugate Functions.

DEFINITION. A conjugate f* of a function f : R"™ — R is defined:

)= sup y'z— f(a)
rz€dom f

Consider the following (highly contrived) problem:
minimize f(x)
T
subject to =0

We form the Lagrangian L(z,v) = f(x) + vTz, and so it follows that the dual function is
given by:

g(v) = iI%ff(x) + vz
=- SI;p(—V)Tw — f(z)
— ()

1.3. Lagrange Dual Problem. For all (\,v), A > 0, g(\,v) gives a lower bound on
p*. It follows that we attain the best lower bound by solving:

maximize g\, v)
AV
subject to A>0

This is the Lagrange Dual Problem associated with the original (primal) problem.



1. DUALITY 7

DEFINITION. (), v) dual feasible implies that A > 0,¢(\,v) > —oo implies (\,v)
feasible for the dual problem.

We denote (A*,v*) the dual optimal multipliers.

REMARK. The dual problem is a convex optimization problem, as the objective to be
maximized is concave and the constraint is convex; this is true regardless of the convexity
of the primal problem.

1.3.1. Weak Duality.
DEFINITION. Weak duality implies
d* <p*
and holds even when the primal problem is not convex.
DEFINITION. We define the optimal duality gap of the original problem
pr—d*
1.3.2. Strong Duality.

DEFINITION. Strong duality implies

&= p*
Strong duality usually holds when the primal problem is convex, i.e.,
minimmize fo(z)
subject to file) <0,i=1,...,m
Ax =10
with fo,..., fin convex.

Additional constraint qualifications are necessary beyond convexity to establish strong
duality. One such constraint qualification is Slater’s condition.
1.3.3. Slater’s Condition. One such version of Slater’s condition is as follows:

CLAIM 1. There exists x € relint D such that
fo(x) <0,0=1,...,m, Az =10

Because the constraints hold with strict inequality, such a point is called strictly feasible.
Slater’s theorem states that if Slater’s condition holds and the problem is convex, then
strong duality holds.

Slater’s condition can be relaxed such that affine constraints need not hold with strict
equality. That is, if the first k constraint functions fi, ..., fi are affine, then strong duality
holds provided there exists an x € relint D such that:

filx) <0,i=1,...,k, filx) <0,i=k+1,...,m, Ax=b

1.4. Geometric Interpretation.
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1.5. Saddle-point Interpretation.

1.6. Optimality Conditions.
1.6.1. Certificate of Suboptimality and Stopping Criteria.
1.6.2. Complementary Slackness.
1.6.3. KKT Conditions.
2. Convexity

A set C is convex if
r,yeC=ar+(l—a)elC

for all o € [0, 1].
A function f is convex if for all z,y € dom f:

flaz+ (1 -a)y) <af(@)+(1-a)f(y)
for all o € [0, 1].

3. Projections

3.1. The /5 Ball. Consider the case of projection onto the ¢» ball. That is, given
y € R%:

minimize |z — vl
T
subject to lz|| <1

CLAIM 2. This is solved by:
y o Jor flylly <1
Px(y) = { 2

ﬁ otherwise

ProOF. We form the Lagrangian:
2 2
o = yll3 = (1= l2113)
and observe that Slater’s conditions are satisfied:
. 2 2 . 2 2
minmax o —y[; (1~ 2]3) <= maxmin |z —yl3 s (1~ 2]}

Taking the gradient, we have

.Y
f= 7
1+p
and substituting this back in and taking the maximum over y, we then have:
] for [jy|| <1
H= lly|| =1 otherwise
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4. Clustering: k-Means

The k-means problem is posed as follows: given {z;}}" ,, z; € R?, k, we want to

minimize 2l = ol
subject to Cy,...,Cp € RY

4.1. Lloyd’s Algorithm. The most widely used algorithm for solving k-means is
Lloyd’s Algorithm.
Lloyd(init, k, X)
(1) (Cj,m) = init(X, k)
(2) while not converged:
) €= Ficy
(b) m(i) = arg mincpy ||lz; — Cill3
4.1.1. Algorithm Initialization. There are many choices for algorithm initialization:

(1) Choose centers randomly.

(2) Assign clusters randomly.

(3) Choose points in the datasets as centers randomly without replacement.

(4) k-means++: choose the first center randomly, and choose subsequent centers
afterward randomly with probability inversely related to distance to the closest
existing center.



CHAPTER 2

Matrix Factorization

1. Recap of Matrix Factorization
In Matrix Factorization, we wish to decompose a data matrix X in some meaningful

way.

1.1. Principal Components Analysis as Matrix Factorization. In Principal
Components Analysis, we found the most representative linear directions. Consider X €
R"*¢. We want to express it as X = AB, A € R"** B € R**?, Through PCA, we have:

A = UiSk
B == VkT

with A capturing latent information, e.g., the alignment of Democrats and Republicans
across different policy dimensions.
We can solve unconstrained PCA using alternating minimization.

1.2. k-Means as Matrix Factorization. We can formulate k-means in such a fash-
ion, for X € R™*¢;

. 2
m111141711rguze HABT — XHF

subject to AeR™ " BeR™ B e {0, 1}7231'1' =1
J

To solve this, we can use alternating minimization, which is essentially equivalent to Lloyd’s
algorithm; we fix one matrix and minimize with repsect to the other.

2. Power Method as Alternating Minimization

Power Method. The power method is an algorithm for computing the best rank-1
approximation of a matrix in the Frobenius norm.

2
. . . bT —X
minimize |a | &
subject to acRLbER" |a|, =1

We provide this as an example of a problem that can be solved via alternating minimization.

10
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In general, the ||a|, constraint is not convex, as it enforces equality rather than in-
equality. However, projection onto this set is much simpler, and barring the zero point,
projection onto this set is unique.

REMARK. Projection onto the set C'= {v : ||v||, = 1}:
P i T = 1 —_ 2
e(y) = & = argmin [l — |

is solved by:

R {anything fory=20
xr =
Y
W, fory 70

We now present the alternating minimization algorithm for the power method.
AltMin(Init, X)

(1) ap, by = Init(X)
(2) while not finished:
__ xzb
(a) k41 = ||§b£||
(b) bry1 =" k41
This is true because we are solving the following optimizations:

. . 1 T 2
ag+1 = argl‘iﬂ;gl 9 Jabi — X ||

although the constraint is no longer convex, the KKT conditions still hold. That is,

. . 1
min = min max o |aby — XHi: +p (Ilallg - 1>

still holds. The gradient is given by:
Vo = (ab} — X)bg + 2pa)

We set this equal to zero, which implies that:

xb
a(l+2p) = 7k2
[1br 115
= a x xbg
to satisfy the constraint, we thus set:
Xby

Ok+l = o T
[ X x|
This is not rigorous. We can make this rigorous by factoring b"h7l,

REMARK. This can be interpreted as a flavor of ridge regression.
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We now proceed to the by step. We want to solve:
. T 2
bpy1 = argmbln Hbak+1 — XHF
We observe that the gradient is given by:

(bakr1 — X) aps1

which implies that the optimum is given at bxy1 = Xagi1.

3. Soft Clustering

Recall the k-means problem previously presented. We now relax the constraint on B
such that it may take on values in the (k — 1)-simplex. Our new problem is:

minimize HABT - XH?
A,B
subject to Ae R BeR™ B> O,ZBZ‘]‘ =1
J

Now, let us think about how the A update can be interpreted as ridge regression (in al-
ternating minimization for the power method). This can be solved with Projected Gradient
Descent (and Lagrange Duality), or with Mirror Descent (Alternating Minimziation)

3.1. Solution through Mirror Descent. One algorithm we saw was alternating
minimization. We consider the problem:

minimize |AB — X ||§7
A,B

subject to AeR™F Be R AT =1
and observe that we can solve for each column of B independently, because the Frobenius

norm decouples the problem. Therefore, applying the least squares solution to each column
B, we have:

B=(ATA)'ATX
Because the rows of A are constrained to belong to the simplex A, we now have:
n
minif{nize ; |A;. B — XzHg

subject to A, e A
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which can be solved via mirror descentﬂ with updates given by:
Al exp { BT (A8 - ;) }

5, Alyexp { ~4BI (A8B - X,) |
C

Vk+4

Intuitively, we take inner products between row vectors, and ask, “for a particular j, how
does the j*™ row of B correlate with the error? If there is a negative correlation, we boost
up A; if there is a positive correlation, we shrink A (too much error).

Observe that if we remove the exponent, we recover vanilla gradient descent. Here, we
use a multiplicative update rather than an additive update. This is a good algorithm for
solving least squares when the coefficients must live on the simplex.

k+1 _
ij

ty =

3.2. Solution through Projected Gradient Descent. Multiplicative weights is
useful in the case where the solutions are constrained to live on the simplex. For more
general constrained optimization, we can use projected gradient descent. Essentially, given
a convex constraint set A, we take a normal gradient step, and then project the result of
the step onto A.

Consider the case of relaxed k-means, where A is the (k + 1)-simplex:

B =arg glelJI‘l‘ HABT — XH;

That is, given a matrix of vectors A, we want to find a B such that the its columns
provide convex combinations of the columns of A which represent the matrix X well.
Because this is a well-behaved convex function™?the initialization doesn’t really mat-
ter.
ProjGradDescent (Init, A, X)
(1) By = init(X, A)
(2) while not done:
(a) Biy1 = Pa(By. — (AT (ABg. — X))T)
This is exactly the least squares gradient step, just that we have a projection onto the set

A.
3.3. Relaxing the Projection. The projection step dictates:
. 2
Py(y) = argmin ||z — yl|;
subject to z > 0, Zle ;=1
We can use Lagrange multipliers to rewrite the equality constraints:
1 n
P =a in max = ||z — y||3 i — 1
ly) = argminmax 5 fle —yl; + p (Z} zi )
e

1 Also known as Multiplicative Weights.
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We may interpret this as ridge regression in the sense that we are tuning over pu,
without worrying about maximizing the objective. Thus, we can reformulate our problem
as follows. We want to pick a p > 0 and solve:

n
- . 2
B= argglé%HABT —XHF —G-Z WZ.BU

i=1 j

Regularizer

where we can interpret the p; as a parameter of regularization. We recall that Ridge
Regression may be formulated as:

. 1 2 A 2
argmin | Az — b2 + 2 [l

Basically, we want to constrain the ¢ norm, but we don’t want to have to go through
the hassle of finding the Lagrange multiplier in closed form. We use p as a parameter to
control the sum instead. We penalize the problem for making the sum too big; previously,
in soft clustering, we wanted it to be close to one.

We may now observe that

~ . 2 n
B = arg%lg&HABT —XHF —i—; ,uizj:Bij

Regularizer

is just like Projected Gradient Descent, but we don’t need to optimize over p anymore.
(Why are penalties being assigned on an observation-by-observation basis rather than a
variable-by-variable basis?)Why’]

So, do we always want B to be positive? What if we want to add some signal in some
directions, and remove some signal in other directions?

4. Sparsity
4.1. Relaxing Sparsity. Recall the projection stepWhy7l

Recalling that here B € R™*_ we want to solve B;. to be
. 112
arg min HAbT - X.ZHF + i [|blly

subject to b > 0, b € RF.
Now, we can use gradient descent:

biyr = |br — m[AT(Aby — X ;) + plg]]

So, we will do a normal gradient descent step, as if we didn’t care that B > 0, and
if it’s negative, just threshold it to zero. This performs sparsification. One of the more
popular reasons for sparsity is to add intepretability. For example, in k-means, we imposed
a restriction on the rows of B to be one-sparse; each point belongs to one cluster. Here,
we relax the one-sparse assumption, but still enforce sparsity.
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4.2. Encouraging Sparsity. In many applications, we don’t want the B > 0 con-
straint, which gave us sparsity. If we drop the B > 0 constraint, then we get Independent
Component Analysis. We also get Sparse-PCA. We still want to encourage sparsity in
these settings. As opposed to PCA, ICA just wants to factorize data in some meaningful
way. We want a factorization such that the columns are independent.

EXAMPLE 4.1. An example is the cocktail party problem. There are n recordings of n
speakers speaking simultaneously, about unrelated things. We want to decompose the sum
of the voices. We want to find independent columns. One of the best ways to do this is to
make B sparse.

ExXAMPLE 4.2. Sparse-PCA could find usage in gene expressions, where there are a lot
of genes, but maybe only a hundred patients. We want to find a sparse subset of the 50,000
genes. We don’t have enough patients to do PCA. So, we can encourage sparsity on A,
but this is dual, so it doesn’t matter (we can just consider the transpose).

5. Lasso
We now want to solve:
1 2
JlaBT - x|

such that B; is s-sparse. In k-means, we did one-sparse. It is much harder to do s-sparse.
One way to do this is with the lasso. We use L; regularization:

.. 1 T 2 &
HllI}i%llze §HAB —XHF—J-ZM | Bi. Iy

i=1

subject to A e R¥>F B e R

For p; we have many choices, if X is normalized then we can set all p to be equal. If
X is not normalized and one column is much larger than the rest, then it will dominate
the optimization.

Because there are no constraints on A, that optimization is easy. We look more closely
at B.

5.1. Solving for B;. We can solve:
B;. = argmin | Ab — X2 + bl

with gradient descent:
bir1 = by — n[AT (Ab; — X ;) + p sign(b)]

where sign(0) can be anything in (—1,1) (subgradient). This converges well with n, =

C

Vi+2©
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5.2. Alternative Optimization Methods. There are (at least) two methods that
converge much more quickly:

e Composite Objective Gradient Descent
e Coordinate Descent

We can thus instead use Iterative Soft Thresholding:
bt = Susne (be — m[AT (Aby — X))
DEFINITION. The soft-thresholding function is defined as follows:
Sa(z) = sign(z) - max{|z| — «, 0}

That is, if we are within (—a, a), we set it to zero; otherwise, we shrink towards zero.

6. Sparse Dictionary Learning

Recall that we want to:

minimize |AB — X||%
A.B

subject to BeBCRF" X eR™™ Ac A

The constraints on A, B depends on the problem (e.g., k-means, etc.). Note that here the
dimensions of B are flipped!

We examine an example from neuroscience. X may be some image. A may be some
way of representing the image. B denotes the neurons firing (specifically, the columns of
B denotes the activity of the neurons).

Our intuition is that the columns of B are sparse (recall that each column of B denotes
which columns of A we are interested in.). Each column of A denotes the quantity that
the neuron that may be interested in seeing (each neuron is assigned to a column.) For
example, if the columns of B are one-sparse, then each column of B denotes which column
of A we should put in its place.

B={B: V j,Bjis "sparse” }
For example:
Bo={B: ¥ j,|Bjll, < S;}
where the £y norm counts the number of nonzero entries. That is, we want to enforce
Sj-sparsity in each column.

6.1. Optimization. Recall that we are solving these problems with Alternating Min-
imization:

Ay = argmin ||AB, — X ||? Py

r1 = argmin |AB; — X||p (Pa)

By1 = argmin || A1 B — X|? P
L1 = argnin [ A 2 (PB)

So, how can we solve these subproblems, given the the constraints of A, B? If A = R%¥*F,
then P4 is just linear regression. If B = By, then (in general, Pp is “hard”, taking O(nk?)
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(because we need to cycle over all possible subsets, where s = max; s; In k-means, we set
s =1, so it is tractable. When s becomes interesting, it becomes intractable.

6.2. Easier Way to Encode Sparsity.
B, ={B:|Bl, < s}

Here we bound the sum of absolute values. The set B;, is now convex, so we can run
projected gradient descent with convergence guarantees. Now, we have an outer loop of
alternating minimization, but with Pp, we have an inner loop. This time, the projection
is onto the ¢; ball.

We can also consider the C'a (simplex):

k
BA:{B:BZO,Zszzl}

i=1

We can solve this Pg problem using multiplicative weights or projected gradient descent.

6.3. Inducing Sparsity through Regularization. We can also encourage sparsity
not through constraints, but instead with regularization.

Phrarg min [AB - X|%+ 3 A 18,
J
where here we denote the elementwise-equivalent of the Frobenious norm.

This is softer than with constraints. Now, we have a tradeoff between how well we
can fit, against the penalty. A shrinkage in the loss function must overcome the imposed
penalty. This is more popular than the By, version of the problem.

There is a duality between the constrained problem and the penalized problem. There
is a result which says that for every constraint we could impose, there is a corresponding
A*. But a very small difference in B could result in a large difference in A*. Using the
penalized problem yields more robust results.

6.4. Proximal Gradient Descent. Suppose A\; = A V A;.
Bhi1 = Spox (B — mn(AT(ABy, — X))

The outer Bj41 loop updates the B;, whereas here we are iterating through B}, to solve
problem Pp. Recall the soft-thresholding function from last class:

Sa(x) = sign(z) - max{|z| — a, 0}
6.5. Coordinate Descent. To solve P, pick some entry of B;; and optimize. For a
single entry, this is very easy.
(1) Let b= B.
(2) Let z = X ;.
(3) Solve ||Ab — x||3 4+ \||b||, for each j by optimizing over b;.
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We can see that this work because we can split the Frobenious norm splits across the
columns, and we sum over the ¢; norms of the columns.

where

0 otherwise

bj forj#1
byij =

Now, let y = x — Ab.

CLAIM 3.

AT
bi =S5 'Zy2
2141 \ || Al

Observe that this is exactly the least-squares solution for a single coordinate.

This is a nice, simple, closed form solution for each iterate.Incidentally, scikit-learn
formerly used gradient descent for non-negative matrix factorization, but deprecated it in
favor of coordinate descent.

PROOF. Let a = A; € R%, y € R%.
We can see this from:
in|lab — yl||? + A|b
min [|lab — yll; + Alb|

We can take the subgradient of this and set it to zero:
A
a®(ab* —y) + 5 sign(b*) =0
Observe that a”a = ||a/|3. Then we have

aly
7~ 2 8
lallz  2]lall3

ign(b)

So, we have on a case-by-case basis:

T _l)\
¢ ”3;“22 for a’'y > %
b= T A
a’ y+3A A
g fraty<s
T T
Suppose |aly| < % Then b =0, sign(0) = 2“/\ Y. We can check that 2‘3 y‘ < 1 as required
for 4l O

6.6. Block Coordinate Descent. There is also an extension in which we pick a set
of coordinates and optimize them all at once. For example, we could optimize over an
entire row of B at once rather than one entry at a time, because the columns are not
coupled.
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7. Topic Modeling

Suppose we want to find topics from which documents are drawn. How would we model
that?

In the previous matrix factorization techniques, we imposed different constraints and
parameters. How do we pick these parameters, e.g., the number of clusters, the number
of speakers in an audio track, etc. We want to pick a small number of components, but
enough such that we can decouple the signal well.

In topic modeling, the “number of topics” can also be hand-wavy. In many cases,
people compare the output to expert-tagged datasets.

NoTATION 7.1. In the bag of words model, we define:

A number of times term ¢ appears in document d

Jia = total number of words in document d
We assume this encodes the relative importance of that word in the document. Each
document z4 € R” is a vector where each element Tt = fid-

REMARK. How does this compare to indicator variables? It can pick up on important
words if they appear frequently. But sometimes a single word might only appear once but
encapsulate the entire document (e.g., appear in the header).

REMARK. How should we deal with documents that are extremely short? Another
option is to take:

Tir =€+ (1 —¢€)fua
with € = 0.1. This is equivalent to placing a prior (from a statistical motivation).
How should we deal with words that appear in all documents?
NOTATION 7.2. We define, where t is the term, and D is the collection of documents:
1
— Jlog (2L
IDFyp = ¢ 198 | s~11a:teDy
|D|
log {1+ Zl{d:teD})
All three are possible choices.
Now, a possible choices of x4 could be:
T4t = fta x IDFyp

where the IDF weights the terms based on how often it is witnessed across documents.
Thus, if a term is only seen in a subset of documents, we assume it is more informative in
helping us discriminate topics.
For now, we consider the simplest version:
Tat = ftd
Therefore, we can construct the model:

rg = Abg
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where A € RT*K is the topic matrix, A > O,ZJTZI Aj; =1, and by € RX, with by >
0,> ;b4 = 1.

Here, not only are the by constrained to live within the simplex, the columns of A are
constrained to the simplex as well (because each column gives a multinomial over the terms
for each document).

Consider the case where by € {0,1}, Zle bg; = 1. Then in this setting, by is an
indicator vector giving the topic ¢ to which x4 corresponds. That is;

xg = Abg
selects a single column of A; so, in this setting,
Tq — Al

which is equivalent to saying that each document only has a single topic, so we expect the
term frequencies in that document to correspond to the term frequencies for the topic to
which it corresponds.

ExaMpLE 7.3. Consider the following topics:
(1) windows, file, dos, files
(2) God, Jesus, bible, faith
REMARK. Recall that in k-means, there were no constraints on A; the centers could
be anywhere. Now, we constrain the column of A to be in the simplex.

But, the model where x4 = Abg; does not work well, because there is noise. So, we
refine it such that we have:
rq = Abg + wy
where w, is noise.

7.1. Solution via Alternating Minimization. We can now return to alternating
minimization. Our goal is to find A, by; so we can try solving:

n
~ 1 9
A= mi — || Abg —
argAelng_l 5 | Abg — 24|35

n
~ 1 9
by = mi — || Abg —
d argbdé%;lzll d— Tall3

We can now rewrite this as a matrix factorization problem. Let us define B =
(b1,ba,...,by) where n = |D|, the total number of documents. Observe that B € RX*",
That is, each column gives the topic loadings for each document (i.e., the proportion of
each topic in each document).

We can thus write the problem for all documents together as:

N 1 9
A= min - ||[AB — X
arg El.A B H HF

. 1 )
B= in - ||[AB - X
arg min o | I
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We again see that this is essentially soft-clustering, with the exception that the columns
of A now must live in the simplex. When A was unconstrained, we could solve for it with
least squares, and we turned to mirror descent for solving B.
7.1.1. Algorithm. AltMin TopicModels
(1) while not finished:

(a) A"l = argmingca 3 ||AB — XI5

(b) B*1 = argming 5 § [ AB — X |3
Observe that A, B are both matrices whose columns to constrained to live in the simplex.
If we redefine:

M
A(M,N) = {A eRMN:A4;>0,) A= 1}
=1
then we can rewrite the algorithm as:
AltMin _TopicModels

(1) while not finished:
(a) AR = argmingeur k) 3 [AB — X[
(b) B*! = argminpe g(xn) & ||AB — X ||
Note that we can use losses other than the Frobenius norm, for example the logistic loss.
This will be addressed in the homework.

8. Non-Negative Matrix Factorization

NMF is similar to topic models. In its simplest form, we want to:

1
milg’mize 5 |AB — X|%,
subject to AeRP* Be R B, |3 =1
We may consider a more general version is considered:
minjze SIAB = X2+ (Al + 181 +p (1413 + 1B]2)
subject to A e R Be RN

that is; the hard constraint is replaced with penalties, with an additional ¢; penalty.

9. Independent Components Analysis

In Independent Components Analysis, we want to take signals and decompose them
into “independent” parts. Let us begin with notation.

NOTATION 9.1. Let X € R¥™", with
X =AS

where A € R™4 § € R4, We may interpret S; as the it" source.
We call A the “mixing matrix” and S the “source matrix”.
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REMARK. A should be invertible. It’s kind of cheating if we have one recording, and
make it louder by a factor of two, and say it’s another recording. We need each recording
to contribute new information.

EXAMPLE 9.2. Source separation between English and Spanish speaker from World
Cup. Here, d is the number of “microphones”, in this case, 2. n would be the length of
the recording. For every source, we have a “mixed-up” audio recording.

Suppose we observe X. Our goal is to find:
S=A"'X

without knowing A. We make two assumptions to make this problem tractable.

First, we want to impose structure on .S such that the rows of S are independent. That
is, the data are independent.

Second, we assume that the entries of S are mot Gaussian-looking. Although the
Gaussian assumption makes stuff nice to work with, it made this source separation problem
more difficult. Empirically, if we took a histogram of all the points in a row of .S, they
don’t look “bell-shaped”.

There are some issues that we can’t recover from:

(1) We can’t distinguish between S and a row-permuted S’.
(2) We can’t distinguish between scalings of the rows, i.e., S and a matrix S’ where
an arbitrary row is scaled by a factor of .

But these two are not fatal; we can still recover the original audio signals and normalize.
But if amplitude is important, we’ll have to take on extra assumptions.

9.1. Classical ICA. In the normal ICA problem, we want to find S. The classical
way to do this is to recover the rows of A~! one at a time.
Let w! be the first row of A~!. This implies that:

wi X =wl' AS
=10 - 0]S
= 51
We may thus find w; using the second assumption. We want to find the w; which makes

w] X look the “least Gaussian”. Note that w] X € R™. How can we make this as “not-
bell-shaped” as possible. To avoid setting w; to zero, we take on a further assumption:

DS [wf X - =1
=1

where fi = 23" | (w] X);. That is; we want the sample variance to be not be zero. This
brings us to the second issue of ICA. Because we cannot distinguish between scaling, we
make the assumption that every row of S has sample variance 1.

Before ICA, statisticians, applied mathematicians, chemists, wanted to find projections
of data that do not appear Gaussian. This is because if we hit random data X with projec-
tions, it tends to look Gaussian.""¥"JWe want to find some measure of “non-Gaussianity”.
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NOTATION 9.3. Let v ~ N(0Opsx1,1) be a sample from np.random.randn (M) where M
is very large. Now, pick some function G that is not quadratic.

Under these assumptions, we will find that the solution:

wi = arg max [BG(w] X)] - BIG()]]”

yields var(wi? X) =1, and var(v) ~ 1 because of the distribution from which it is drawn.

REMARK. We do not want G to be quadratic because we already have a quadratic and
so it will be bad'[citation needed]

9.2. Solution for Classical ICA. We want to solve:
w} = arg max [E[G(w] X)] — B[G()]]*
w1

First, we examine a common choice of G:

1
G(s) = — logcosh(as)
al
where 1 < a; < 2, cosh(t) = et+72€7t This is related to the cumulative distribution
function. "yl
9.2.1. Pre-Processing Steps for ICA. Before we present the algorithm, we pre-process
the data.

(1) Center the rows of the data matrix X. That is, >3, X;; = 0 for all i € [d]. Let

= XT}”, we can center X by replacing it with X — 17, We now assume that X

is row-centered.

(2) Whiten X. We want to find a matrix M such that %TMT =1 MXisa
transformation of the columns such that the covariance of the data is the identity.
This can be achieved via the singular value decomposition.

Assume X = UDVT. Then M = UD'U”. We now assume without loss of
generality that X is row-centered and whitened.

How does this translate to S?7 We make two assumptions on S:

(1) %2?21 Si; = 0; that is, the rows of S are centered.

(2) For all ¢, the var(S;) = 1.
Using the “independence” assumption, we can easily show that

SST = nI (Recall that S € R™))
That is; all of the sources are uncorrelated. So, we have:
MXXMT = MASST AT MT
=nMATAT M7
=n(MA)(MA)T

=nl
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Now, we let X & MX and A & MA. Under X1, = 0, we have w{ X1,, = 0 V wy,
which implies that
var(w! X) = n - wl X XTw,
_ 2
= Jlwill3
=1

which implies that A~! = AT after transformation.
To continue, let us consider a few definitions:

DEFINITION. For a vector z € R™,
1 n
EZ=— 2 Z;
1=

var(Z) = % [Z; — EZ)?

Recall that our first goal is to find a row of A~! and call it w;. To satisfy our assump-
tions for “identifiability”, we want the projection of the data onto w; is non-Gaussian. We
assume without loss of generality that var(w{ X) = 1.

That is, we want to find w; that maximizes the “non-Gaussianity” of wf X subject to
var(wl X) = 1.

DEFINITION. Our measure of “non-Gaussianity” is
[E(G(w] X)) - G(v)]

where G is some function and v is something that looks very Gaussian. For example, we
can take v ~ N (0,I) for M > n.

2

So, one of the interpretations for Independent Components Analysis is solving the
problem:

maximize [E(G(w] X)) - 6]’
w1
subject to var(w?X) =1

Why don’t we want G to be quadratic? This is because the variance of G is already
quadratic. But what if we had an adversary that knew G? Then it could cook up a
non-Gaussian distribution p such that G(p) does look Gaussian.

Two typical choices for fast Independent Components Analysis are:

1
G(s) = — logcosh(a, s) 1<a; <2
a

- {2}

These are nice because they take into account every moment. The takeaway is that there
can be a bad G. If it doesn’t make sense, then try another G.
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We assume that our data is centered and whitened. That is, we assume without loss
of generality that:
X1=0
xXxT

= Ik

due to the centering, whitening, zero mean, and unit variance assumptions.
This allows us to simply the objective.

var(wl X) = %Z ((w{X)z - E[wlTX])Q
i=1

= %Z ((wlTX)z ’
i=1

waXTwl

n
_ 2
= [lwf
Therefore, we may rewrite the optimization as:
2

maximize [E(G(v] X)) — G(v)]
wi
subject to w3 =1

This looks increasingly simliar to problems we have already solved. We are just maximizing
over a vector. This looks like something we can solve via gradient ascent.

To optimize, we see that the maximum is achieved when E [G(wlTX )] is maximized or
minimized. Finding that is hard, so instead, we try to find a stationary point. Gradient
ascent is excellent for finding stationary points.

So, we have a couple options:

(1) Simply run projected gradient ascent on E [G(w] X)] subject to [|w| = 1.
(2) (Fast ICA): Basically uses gradient ascent, but with Newton’s method.

9.3. Fast ICA. If we want to solve a non-linear system of equations, to find a sta-
tionary point, we can take the gradient g(s) = G’(s). But because of the constraint, we
must first introduce a [Lagrange multiplier] again. We now instead maximize over w; and
minmiize over pu:

*ZG wi X.3) + p(ffwn]* = 1)

Now, we can take the gradient and set it to zero.
VG = = Zg TX)Xi+2uwi =0

Newton’s method tells us to approx1mate this with a linear function, and set that equal
to zero.
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Suppose the current iterate is w?. Then we approximate:

Vuw; ~ Zg )X+ 2pwy + — Zg X.i)X.in(wl
=1
Hessian
Therefore, the fast ICA approximation assumes:
1 n
4 Z X XT ( g/ X, ) I
" =1
which implies:
1%( TX)Xi+2 +1i’(TX)( )=0
— w w — w ; wy — =
ni:19 1 pwy ni:19 14

Then, we have:

—(1+ 2p)w; = Zg )X —:ng’(

1 n
0 /
fE XZ. Xi_*E
:>w1<Xnilg(w1 ) . n 4 g(w

subject to the constraint that [lwy )3 = 1
9.3.1. Algorithm. This yields the Fast ICA algorithm:

(1) while not finished:
(a) wi =5 >0 g(w] X)X — (5 Xy o' (wf X)) wy

(b) w1 = =
[l ]l

9.4. Extensions. What about the rest of the sources?
9.4.1. Projection pursuit.

(1) For each wy in an ordered fashion:
(a) while not finished:
(i) Step (1la) of Fast ICA.

0

)

26

(ii) w,": = w,": — Zf llewka, that is project onto the orthogonal com-

plement of the previous wy. (Gram-Schmidt.)

+
coe _ ’UJk
(0w = T,
9.4.2. Parallel Computations.
(1) while not finished:

(a) for each k:
(i) Step (la) of Fast ICA.
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+
Wi

0 0 = ]
k ll2
(b) (wi,...,wp) = Gram-Schmidt(wy", ..., w}).
9.5. Maximum Likelihood.
n | p
maximize Z Z log ps(w;pr_i) + log det w

i=1 |j=1

w = (wi,...,wp)

where ps(t) is some measure.

10. Matrix Completion & the Missing Entry Problem

10.1. Motivation. Suppose we have a matrix M € R%*%_ where we observe some
of the entries. Our goal is to fill in the missing entries based on what has been observed.

ExAMPLE 10.1. Movie Recommendations, Collaborative Filtering, the Netflix Prize
Problem

Suppose d; are users, and dz are movies. Each users have an underlying rating for each
movie, but we only observe some of them. We may also have information about the users
and the movies (e.g. demographic information about users, movie genres, etc.).

10.2. Setup. The most popular model is a low rank factorization, where M = AB, A €
R *k B € R¥*%  The underlying assumption is that users and movies can be expresed
in terms of features. We might think that we cannot observe this feature space, but we
can embed users and movies in this k-dimensional feature space.

Suppose the observations are Q = {(i, j, M;;)|M;; was revealed}.

10.3. Problem. We want to solve the problem:
/l, B = arg min Z (Mij — A,-.Bjj_’)2
(i,5)|M;; revealed
We can compare this to:
A, B = argmin |M — AB||%
Many people add a ridge regression penalty to this formulation:

AB=argmin 37 (My—AB]) X4 JAIE + s 1T
(4,5)|M;; revealed

which improves the statistical and computation performance. Using this model would have
yielded a 7% improvement over Netflix’s existing algorithms at the time.
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10.4. Solution. This problem can be solved with alternating minimization. Random
initalization typically works fine.

However, it works better if initialized from the singular value decomposition. To do
this, we need to set the missing entries set to zero and center the matrix such that the
average of the entries is zero.

There was some theory about this assuming the entries are revealed at random (i.e.,
movies are watched at random).

The other justification for using zeros (in this case, if the ratings are one through five)
for missing entries is that people tend to watch movies that they like. So, if they haven’t
watched a movie, it takes a lot of evidence to overcome the belief that they don’t like the
movie.

10.5. Alternative Solutions. We can think of this as measuring similarities between
users and movies.

We can also think that there are clusters of users, and run k-means on the users. Then
we would have a sparse A; the communities to which a user belongs.

The addition that pushed the method over the top was incorporating temporal trends.



CHAPTER 3
Optimization

1. Stochastic Gradient Descent

1.1. Introduction. Many machine learning problems are of the form:

1 n
arg min — L(x;,y;, w
gweRdn; ( is Yis )
where £ is the loss, {(z;,y;)}I~ is our data, and w are some parameters that we wish to
learn.

EXAMPLE 1.1. Squared loss.
L(X,y,w) = | Xw -yl

1.2. Algorithm.

(1) while not finished:
(a) Pick a random index i € [n].
(b) wepr = wy — e VL( w3, yi, we)
Stochastic gradinet descent basically says, don’t wait for all of the data to compute the full
gradient, just update the weights as they stream in. This is well-adapted to large datasets.

1.3. Convergence. Although stochastic gradient descent will get you close to the
solution quickly, its rate of convergence is only % or M for 0 < X\ < 1, while the rate
of gradient descent is like %, with the n on top because of the sum. We are ignoring the
computation of the gradient here. We can see that eventually the rate of convergence for
gradient descent is much faster.

This rate of convergence is for convex Lipschitz-smooth problems (regularity condi-
tions). Note that the /1 norm does not satisfy this; this is why people invented ways to

get around this, such as shrinkage.

2. Nestorov Acceleration

2.1. Introduction. Nesterov acceleration for both stochastic gradient descent con-
verges with rate ;5 rate.

REMARK. Nesterov acceleration can also be applied to vanilla gradient descent.

29
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2.2. Algorithm. The update is given by:
we = (1 + p)(w—1 — VL (wi—1)) — plwi—2 — 0tV Li(wi—2)

Observe that if mu = 0, we get normal gradient descent. This keeps track of the past
motion, and tells it to go in the direction of where the current gradient wants you to go,
but tempered by where the previous gradient wanted you to go.

This also have a momentum or velocity interpretation. An equivalent formulation is:

Vpp1 = pvp — eV L (wy)
wip1 = wy — WV Li(we) + pvesa
This interpretation is that one is moving with momentum proportional to u, but gets

’bumped’ in a new direction in each iteration (while maintaining some momentum).
There is some theory on picking u, but only applies to convex optimization.

3. Picking Step Size

Oftentimes, people will run for a certain step size, wait until it stops improving, and
then make 7; smaller.

We need to make 7, smaller because once in a while, we might get a bad example which
could push us in the wrong direction. As we refine our running average, we don’t want to
let a single example push us off the current track.

Sometimes, people will run it for a while, and then keep 7, constant. The idea is that
in stochastic gradient descent, each gradient is noisy. Eventually, we want some accuracy,
so the 7; needs to be scaled to the accuracy that we want, and eventually we just keep that

-
4. Mini-Batch Stochastic Gradient Descent

4.1. Algorithm.
(1) while not finished:
(a) wir1 = weny Ziest VLi(w;)
This doesn’t really help on a single computer because of the computational cost of the
summations, but in a distributed setting, the summation can be performed in parallel.

5. Pseudo-Hessian Methods

This is an approximation to the full Newton Step in which rather than finding the full
Hessian, we find a matrix which is easier to invert.

W1 = wy —nH 1 Z VL;(wy)
where H is a “good” matrix that approximates the Hessian.

ExaMPLE 5.1. Limited-memory BFGS for normal gradient descent.
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ExXaMPLE 5.2. AdaGrad and Adam.

In AdaGrad, the idea is that Hessian is a running sum of the squares of the past
gradients. The intuition behind this is that very rarely seen stuff should have greater
influence. It can also be interpreted as an adaptive step-size for each coordinate, but it
essentially is a pseudo-Hessian method.

Adam is an improvement to AdaGrad which includes a dampening step and momentum.

6. Weight Decay
Weight decay is a slight adjustment to stochastic gradient descent.

6.1. Algorithm.
(1) while not finished:
(a) wepr = (1 —npeA)wy — VL (wy)
for a small A. This is essentially ridge regression. Recall ridge regression:

1 n
argmin — > Li(w) + M w|
=1

we observe that its gradient is essentially the weight decay update.
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